The Dynamics of Recurrent Behavior Networks
نویسندگان
چکیده
If behavior networks, which use spreading activation to select actions, are analogous to connectionist methods of pattern recognition, then we suggest that recurrent behavior networks, which use energy minimization, are analogous to Hoppeld networks. Hoppeld networks memorize patterns by making them attractors. We argue that, similarly, each behavior of a recurrent behavior network should be an attractor of the network, to inhibit fruitless, repeated switching between diierent behaviors in response to small changes in the environment and in motivations. We demonstrate that the performance in a test domain of the Do the Right Thing recurrent behavior network is improved by redesigning it to create desirable attractors and basins of attraction. We further show that this performance increase is correlated with an increase in persistence and a decrease in undesirable behavior-switching.
منابع مشابه
Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملهمگامسازی در مدل کوراموتو با نیروی وابسته به زمان در شبکههای پیچیده
In this paper, a generalization of the Kuramoto model is introduced by explicit consideration of deterministically time-varying periodic external force. In this model, the oscillator's natural frequencies and amplitude of collective oscillations are influenced by external forces with constant or random strengths. Then, the synchronization behavior of forced Kuramoto model is studied in some com...
متن کاملUsing the Theory of Network in Finance
It is very important for managers, investors and financial policy-makers to detect and analyze factors affecting financial markets to obtain optimal decision and reduce risks. The importance of market analysis and attempt to improve its behavior understanding, has led analysts to use the experiences of other professionals in the fields such as social sciences and mathematics to examine the inte...
متن کاملبهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adaptive Behaviour
دوره 6 شماره
صفحات -
تاریخ انتشار 1997